

Equipment list

Production & control

Cleaning machine

Ultrasonic 9-tanks cleaning machine. With hot aqueous detergent baths, 2-axis automatic handling system, a lift-out and air-dryer. To prepare the both glass and TCO – substrates prior to silicon coating.

TCO = Transparent Conductive Oxide

• Low pressure PECVD reactor

PECVD = Plasma Enhanced Chemical Vapor Deposition

Equipment for the production of intrinsic and doped thin-film silicon, by a plasma-assisted chemical process starting from gaseous hydride precursors such as silane (SiH₄), see our "Manufacturing process" data sheet. The reactor is equipped with roots and turbo-molecular pumps, 2 RF generators, 9 gas lines, including the plasma etching – gas for the cleaning process.

• 4 micro-etching lasers

YAG lasers with a wavelength of $1.064\mu m$, pulsed by a Q-switch, are supplying very short pulses for the etching of TCO thin films. Two of these lasers have a frequency doubler to reach the wavelength of 532nm, to selectively etch silicon films on top of a TCO. An optical fiber is bringing the power on X-Y tables tool, guided by a home made software in order to pattern the solar cells and modules according to the customer's design.

• 2 magnetron sputtering machines (or PVD = Physical Vapor Deposition)

Machines for reactive and non-reactive DC magnetron sputtering 13''-wide substrates – 3 targets. To produce metallic : Aluminum, Nickel... and oxide coatings : ITO, ZnO ... by reactive sputtering (with O_2 added). These layers are used as back electrodes of the silicon devices or as transparent electrodes. The processes showing high deposition rate and low temperature (< 80° C) are therefore applicable even to plastic substrate like PET, polycarbonate and polyimide.

• 3 solar modules laminators

Hot press (130°C) for EVA-encapsulation of solar modules on a back sheet : glass or plastic tedlar-based sheet. Size : 1×0.5 m each.

• 1 class A SPIRE solar simulator

Flash high-precision SPIRE simulator for the current-voltage measurements of photovoltaic modules under 700 to $1000W/m^2$ in Standard Test Conditions : AM 1.5, 25°C.

Module max size: 1.5m²

• Current-voltage measurements under low illumination

Several I-V measurements units on different light sources: fluorescent tubes 50-1000 lux, bulbs $5000-30\ 000$ lux, HMI lamp up to $80\ 000$ lux. To control PV characteristics of indoor cells as well as outdoor modules and light sensors.

• 1 damp heat chamber / several heat chambers

Dry and humid climatic chambers (85°C 85% H.R.) for annealing and reliability tests.

• Square resistance probe

4 points measurement units for square resistance control of conductive films.